

## Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

## Preparatory Examination 2021-22 Data Structure and Applications [18CS32]

Time: 3 hrs Marks: 100

Date: 23/03/2022 Time: 9.30am-12.30pm

Note: Answer any 5 full questions, choosing one full question from each part.

| QN   | Questions                                                                                                                                                                                                                                                                                               | Marks |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | MODULE 1                                                                                                                                                                                                                                                                                                |       |
|      | What is structure? How it is different from array? Explain dynamic memory allocation functions with syntax and example.                                                                                                                                                                                 | 10    |
| b    | Write the Knuth Morris Pratt (KMP) pattern matching algorithm and apply the same to search the pattern 'abcdabcy' in the text: 'abbzabazdabzabcdabcdabcy'  OR                                                                                                                                           | 10    |
| 2 .  |                                                                                                                                                                                                                                                                                                         | 10    |
| 2 a  | Give the ADT for sparse matrix. Express the given sparse matrix in its triplet form and write the function for its transpose.                                                                                                                                                                           | 10    |
|      | $A = \begin{bmatrix} 10 & 0 & 0. & 25 & 0 \\ 0 & 23 & 0 & 0 & 45 \\ 0 & 0 & 0 & 0 & 32 \\ 42 & 0 & 0 & 31 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 30 & 0 & 0 \end{bmatrix}$                                                                                                                                 |       |
| b    | Write an algorithm for bubble sort. Trace the algorithm for the data: 30,20,10, 40, 80, 60, 70.                                                                                                                                                                                                         | 10    |
| 2    | MODULE 2                                                                                                                                                                                                                                                                                                |       |
|      | Write an algorithm to convert infix to postfix expression. Trace the following with stack: (A+B)*(C+D-E)*F                                                                                                                                                                                              | 10    |
| b    | Write a C program to demonstrate (a) Towers of Hanoii problem  (b) Binomial coefficient calculation (factorial)  OR                                                                                                                                                                                     | 10    |
| 1 0  |                                                                                                                                                                                                                                                                                                         | 10    |
|      | Write the algorithm to implement a stack using dynamic array whose initial capacity is 1 and array doubling is used to increase the stack's capacity (that is dynamically reallocate twice the memory) whenever an element is added to full the stack. Implement the operations – push, pop and display |       |
| b    | Write the static implementation of circular queue in C language. With illustration,                                                                                                                                                                                                                     | 10    |
|      | Explain major limitations of queue.                                                                                                                                                                                                                                                                     |       |
|      | MODULE 3                                                                                                                                                                                                                                                                                                |       |
| a De | efine sparse matrix. Give the sparse matrix representation of linked list for a given atrix                                                                                                                                                                                                             | 10    |
|      | [0 0 4 0 0]                                                                                                                                                                                                                                                                                             |       |
|      | 6 5 0 0 0                                                                                                                                                                                                                                                                                               | 1     |
|      | $A = \begin{bmatrix} 0 & 0 & 4 & 0 & 0 \\ 6 & 5 & 0 & 0 & 0 \\ 0 & 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$                                                                                                                                                                                    |       |
|      | $\begin{bmatrix} 0 & 0 & 0 & 0 & 2 \end{bmatrix}$                                                                                                                                                                                                                                                       | 1     |
|      |                                                                                                                                                                                                                                                                                                         | Alle  |

b Write the node structure for linked representation of polynomial. Explain the

Prepared by:

Roopa G K /Nithin Kurup U G



## Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

| algorithm to add two polynomials represented using linked lists.  OR                                                                                                                                                                                                                                                                                                                                                                                 |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| a Give the node structure to create a singly linked list of integers and write functions to perform the following  (i) Create a list  (ii) Assume the list contains 3 nodes with data 10, 20, 30. Insert a node with data 40 at the end of the list  (iii) Insert a node with data 50 between the nodes having data values 10 and 20  (iv) Display the singly linked list  b Write functions insert front and delete_front using doubly linked list. | 10 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| MODULE 4                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |
| a Given inorder sequence: DJGBHEAFKIC and postorder sequence: JGDHEBKIFCA. Construct binary tree and give preorder traversal.                                                                                                                                                                                                                                                                                                                        | 10 |
| b What is a tree? With suitable example define                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |
| (i) Binary tree                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| (ii) Level of a binary tree                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| (iii) Complete binary tree                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| ( iv) Strictly binary tree                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| OR                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| a For the given data draw a binary search tree 1,3,8,5,7,9,10,12,15,14,13,11,6. Traverse the above generated tree using inorder, preorder and postorder, Also write a function in C for each one.                                                                                                                                                                                                                                                    | 10 |
| b What is expression tree? Construct a expression tree for the given expression                                                                                                                                                                                                                                                                                                                                                                      | 10 |
| i. ((6+(3-2)*5) ^ 2 + 3) ii. A-B/C^D+E*F                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| MODULE 5                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 9 a Define Graph. Give the matrix and adjacency list representation for the weighted graph given below                                                                                                                                                                                                                                                                                                                                               | 10 |
| 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| b What is collision? What are the methods to resolve collision? Explain linear probing and chaining with an example.  OR                                                                                                                                                                                                                                                                                                                             | 10 |
| a Write a short note on hashing. Explain any 3 popular HASH functions.                                                                                                                                                                                                                                                                                                                                                                               | 10 |
| What do you understand by the term file organization? Briefly summarize any 3 videly used file organization techniques.                                                                                                                                                                                                                                                                                                                              | 10 |

Prepared by

oopa G K /Nithin Kurup U

/Nithin Kurup U G